

LOCOSYS Technology Inc.

		ww.iocosystech.com
Product name	Description	Version
LS20030U-G	GNSS smart antenna module , USB, 9600BPS, 30x30mm	
LS20031U-G	GNSS smart antenna module , TTL, 9600BPS, 30x30mm	1.2
LS20032U-G	GNSS smart antenna module , RS232, 9600BPS, 30x30mm	

Datasheet of Multiple GNSS smart antenna module, LS2003xU-G series

1 Introduction

LS2003xU-G series products are complete standalone GNSS smart antenna modules, including an embedded antenna and GNSS receiver circuits, designed for a broad spectrum of OEM system applications. The product is based on the proven technology built-in MT3333 chip solution. It can simultaneously acquire and track multiple satellite constellations that include GPS, GLONASS, GALILEO, QZSS and SABS. Besides, it can provide you with superior sensitivity and performance even in urban canyon and dense foliage environment. Its far-reaching capability meets the sensitivity requirements of car navigation as well as other location-based applications.

2 Features

- MediaTek high sensitivity and low power solution
- Support GPS, GLONASS, GALILEO and QZSS
- Capable of SBAS (WAAS, EGNOS, MSAS, GAGAN)
- Support 99-channel GNSS
- Fast TTFF at low signal level
- Built-in 12 multi-tone active interference canceller
- Free hybrid ephemeris prediction to achieve faster cold star
- Built-in data logger
- Indoor and outdoor multi-path detection and compensation
- Support ±11ns high accuracy time pulse (PPS)
- LED indicator for GNS positioning status
- Build-in micro battery to reserve system data for rapid satellite acquisition
- Support UART (TTL) / RS-232 / USB interface
- 3 Application
 - Personal positioning and navigation

- Automotive navigation, model aircraft navigation
- Marine navigation
- Static timing application
- Surveying and mapping
- Fleet management

Fig 3-1 System block diagram of LS20030U-G

Fig 3-2 System block diagram of LS20031U-G

Fig 3-3 System block diagram of LS20032U-G

LOCOSYS Technology Inc. 20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi District, New Taipei City 22101, Taiwan 🕾 886-2-8698-3698 🖃 886-2-8698-3699 Cwww.locosystech.com

4 GNSS receiver

Chip	MediaTek MT3333				
Farmer	GPS, GALILEO ⁽¹⁾ , QZSS: L1 1575.42MHz, C/A code				
Frequency	GLONASS: L1 1598.0625MI	Hz ~ 1605.375MHz, C/A code			
Channels	Support 99 channels (33 Trac	king, 99 Acquisition)			
Update rate	1Hz default, up to 10Hz				
	Hot start (Open Sky)	1s (typical)			
A - ministion Time	Hot start (Indoor)	< 30s (typical)			
Acquisition Time	Cold Start (Open Sky)	33s (typical) without AGPS			
		< 15s (typical) with AGPS (hybrid ephemeris prediction)			
	Autonomous	2.5m CEP			
Position Accuracy	SBAS	2.5m (depends on accuracy of correction data).			
Max. Altitude	< 18,000 m, up to 50,000m by request				
Max. Velocity	< 515 m/s				
Desta 1 Comment	NUME A 0192 \rightarrow 4 00 ⁽²⁾	9600 bps ⁽³⁾ , 8 data bits, no parity, 1 stop bits (default)			
Protocol Support	NMEA 0183 ver 4.00 ⁽⁵⁾	1Hz: GGA, GLL, GSA, GSV, RMC, VTG			

Note (1): LS2003xU-G module is default configured for concurrent GPS, GLONASS, QZSS and SBAS reception. Please contact us for different default configuration, such as concurrent GPS, GLONASS, GALILEO, QZSS and SBAS.

Note (2): The default NMEA version is 4.00 and it also can configure to 4.10. If customers want to the product to support 4.10 please contact us in advance.

Note (3): Both baud rate and output message rate are configurable to be factory default.

5 LED indicator

The red LED is an indicator of GNSS positioning status. In continuous power mode, it flashes once per second when position is fixed. Otherwise it is off. The timing in detail is as below.

Fig 5.1 LED indicator of positioning status

6 Pin assignment and descriptions

Top View

• LS20030U-G

Pin #	Name	Туре	Description	
1	VCC	Р	Power input	
2	RX	Ι	D- Line (PL2303 DM)	
3	ТХ	0	D+ Line (PL2303 DP)	
4	GND	Р	Ground	
5	TIMEPULSE	0	1PPS, default 100 ms pulse/sec when 3D fix is available)	
6	NC		No connect	

• LS20031U-G

Pin #	Name	Туре	Description	
1	VCC	Р	Power input	
2	RX	Ι	Data input (TTL level)	
3	ТХ	0	Data output (TTL level)	
4	GND	Р	Ground	
5	TIMEPULSE	0	1PPS, default 100 ms pulse/sec when 3D fix is available)	
6	NC	Ι	No connect	

• LS20032U-G

Pin #	Name	Туре	Description	
1	VCC	Р	Power input	
2	RX	Ι	Data input (RS232 level)	
3	ТΧ	0	Data output (RS232 level)	
4	GND	Р	Ground	
5	TIMEPULSE	0	1PPS, default 100 ms pulse/sec when 3D fix is available)	
6	NC		No connect	

7 DC & Temperature characteristics

7.1 DC Electrical characteristics

Parameter	Symbol	Product	Min.	Тур.	Max.	Units
		LS20030U-G	4.75	5.0	5.25	
Input voltage	VCC	LS20031U-G	3.0	3.3	3.6	V
		LS20032U-G	4.75	5.0	5.25	
		LS20030U-G		45 ⁽¹⁾		
Input current	Icc	LS20031U-G		29 ⁽¹⁾		mA
		LS20032U-G		32 ⁽¹⁾		
High Level Input Voltage	V_{IH}	LS20031U-G	0.7*VCC		VCC	V
Low Level Input Voltage	V_{IL}	LS20031U-G	0		0.2*VCC	V
High Level Output Voltage	Vон	LS20031U-G	VCC-0.4			V
Low Level Output Voltage	Vol	LS20031U-G			0.4	V
High Level Output Current	Іон	LS20031U-G		4		mA
Low Level Output Current	Iol	LS20031U-G		4		mA

Note (1): Measured when position fix (1Hz) is available, the function of self-generated ephemeris prediction is inactive.

7.2 Temperature characteristics

Parameter Symb		Product	Min.	Тур.	Max.	Units
		LS20030U-G		-	85	
Operating Temperature	Topr ⁽¹⁾	LS20031U-G	-40			°C
		LS20032U-G				
		LS20030U-G				
Storage Temperature	Tstg ⁽²⁾	LS20031U-G	-40	25	85	°C
		LS20032U-G				

Note (1): battery: $-20 \sim 60^{\circ}$ C

Note (2): battery: $-40 \sim 60^{\circ}$ C

- 8 Mechanical specification
 - LS2003xU-G

9 Software interface

9.1 NMEA output message

Table 9.1-1 NMEA output message

NMEA record	Description
GGA	Global positioning system fixed data
GLL Geographic position - latitude/longitude	
GSA GNSS DOP and active satellites	
GSV GNSS satellites in view	
RMC Recommended minimum specific GNSS data	
VTG Course over ground and ground speed	

• GGA--- Global Positioning System Fixed Data

Table 9.1-2 contains the values for the following example:

\$GNGGA,183015.000,2503.7123,N,12138.7446,E,2,16,0.68,123.2,M,15.3,M,,*78

Table9.1-2 GGA Data Format

Name	Example	Units	Description
Message ID	\$GNGGA		GGA protocol header
UTC Time	183015.000		hhmmss.sss
Latitude	2503.7123		ddmm.mmmm
N/S indicator	N		N=north or S=south
Longitude	12138.7446		dddmm.mmmm
E/W Indicator	Е		E=east or W=west
Position Fix Indicator	2		See Table 9.1-3
Satellites Used	16		Range 0 to 33
HDOP	0.68		Horizontal Dilution of Precision
MSL Altitude	123.2	meters	
Units	М	meters	
Geoid Separation	15.3	meters	
Units	М	meters	
Age of Diff. Corr.		second	Null fields when DGPS is not used
Diff. Ref. Station ID			
Checksum	*78		
<cr> <lf></lf></cr>			End of message termination

Table 9.1-3 Position Fix Indicators

Value	Description
0	Fix not available or invalid
1	GPS SPS Mode, fix valid

2	Differential GPS, SPS Mode, fix valid
3-5	Not supported
6	Dead Reckoning Mode, fix valid

• GLL--- Geographic Position – Latitude/Longitude

Table 9.1-4 contains the values for the following example:

\$GNGLL,2503.7135,N,12138.7448,E,055757.000,A,D*45

Table 9.1-4 GLL Data Format

Name	Example	Units	Description
Message ID	\$GNGLL		GLL protocol header
Latitude	2503.7135		ddmm.mmmm
N/S indicator	Ν		N=north or S=south
Longitude	12138.7448		dddmm.mmmm
E/W indicator	Е		E=east or W=west
UTC Time	055757.000		hhmmss.sss
Status	А		A=data valid or V=data not valid
	D		N = No position fix
			A = Autonomous GNSS fix
Mada			D = Differential GNSS fix
Mode			R = RTK fixed
			F = RTK float
			E = Estimated/Dead reckoning fix
Checksum	*45		
<cr> <lf></lf></cr>			End of message termination

• GSA----GNSS DOP and Active Satellites

Table 9.1-5 contains the values for the following example:

NMEA V4.0

\$GPG\$A,A,3,193,19,06,05,02,17,09,12,13,195,,,1.23,0.92,0.81*01

```
$GLGSA,A,3,69,,,,,1.23,0.92,0.81*13
```

\$GAGSA,A,3,,,,,1.23,0.92,0.81*11

NMEA V4.10

\$GNGSA,A,3,02,06,17,19,09,05,28,193,195,,,,1.34,1.02,0.87,1*01

\$GNGSA,A,3,69,,,,,1.34,1.02,0.87,2*07

\$GNG\$A,A,3,,,,,1.34,1.02,0.87,3*09

Table 9.1-5 GSA Data Format

Name	Example	Units	Description
Message ID	\$GNGSA		GSA protocol header,
			GP=GPS/QZSS, GL=GLONASS, GA=GALILEO,

LOCOSYS Technology Inc.

		BD=BEIDOU (GN for NMEA Ver 4.10)
Mode 1	А	See Table 9.1-6
Mode 2	3	See Table 9.1-7
ID of satellite used	02	Sv on Channel 1
ID of satellite used	06	Sv on Channel 2
ID of satellite used		Sv on Channel N
PDOP	1.34	Position Dilution of Precision
HDOP	1.02	Horizontal Dilution of Precision
VDOP	0.87	Vertical Dilution of Precision
System ID	1	1: GPS, 2:GLONASS, 3:GALILEO, 4:BEIDOU
		(NMEA Ver 4.10 support only)
Checksum	*01	
<cr> <lf></lf></cr>		End of message termination

Table 9.1-6 Mode 1

Value	Description
М	Manual- forced to operate in 2D or 3D mode
А	Automatic-allowed to automatically switch 2D/3D

Table 9.1-7 Mode 2

Value	Description
1	Fix not available
2	2D
3	3D

• GSV---GNSS Satellites in View

Table 9.1-8 contains the values for the following example:

\$GPGSV,3,1,11,18,67,344,48,09,55,031,50,42,54,142,40,193,47,174,45,0*51

\$GPGSV,3,2,11,21,44,219,46,27,39,035,48,12,34,131,44,15,30,057,46,0*6A

\$GPGSV,3,3,11,22,27,319,47,14,22,285,42,25,19,171,40,0*58

\$GLGSV, 2, 1, 07, 76, 71, 201, 44, 65, 57, 041, 40, 75, 48, 028, 39, 72, 27, 108, 39, 1*75

\$GLGSV, 2, 2, 07, 66, 25, 333, 43, 77, 17, 207, 37, 81, 02, 280, 29, 1*41

\$GAGSV, 2, 1, 05, 01, 83, 026, 35, 26, 53, 024, 35, 21, 38, 134, 30, 12, 16, 233, 21, 0*70

\$GAGSV,2,2,05,18,,,30,0*7B

Table 9.1-8 GSV Data Format

Name	Example	Units	Description
Message ID	\$GPGSV		GSV protocol header
			GP=GPS/QZSS, GL=GLONASS, GA=GALILEO,
			BD=BEIDOU

LOCOSYS Technology Inc. 20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi District, New Taipei City 22101, Taiwan 886-2-8698-3698 386-2-8698-3699 \$\$\$ www.locosystech.com

Total number of messages ⁽¹⁾	3		Range 1 to 6
Message number ⁽¹⁾	1		Range 1 to 6
Satellites in view	11		
Satellite ID ⁽²⁾	18		Channel 1 (Range 01 to 196)
Elevation	67	degrees	Channel 1 (Range 00 to 90)
Azimuth	344	degrees	Channel 1 (Range 000 to 359)
SNR (C/No)	48	dB-Hz	Channel 1 (Range 00 to 99, null when not tracking)
Satellite ID	09		Channel 4 (Range 01 to 196)
Elevation	55	degrees	Channel 4 (Range 00 to 90)
Azimuth	031	degrees	Channel 4 (Range 000 to 359)
SNR (C/No)	50	dB-Hz	Channel 4 (Range 00 to 99, null when not tracking)
Signal ID	0		GPS/QZSS: All signal=0,
			GLONASS: All signal=0, G1 C/A=1
			GALILEO: All signal=0,
			BEIDOU: All signal=0
			(NMEA Ver 4.10 support only)
Checksum	*51		
<cr> <lf></lf></cr>			End of message termination

Note (1): Depending on the number of satellites tracked multiple messages of GSV data may be required. Note (2): GPS ID: 01~32, SBAS ID: 33~64, QZSS ID: 193~196, BEIDOU ID: 01~32, GALILEO ID: 01~32.

• RMC---Recommended Minimum Specific GNSS Data

Table 9.1-9 contains the values for the following example:

\$GNRMC,183015.000,A,2503.7123,N,12138.7446,E,0.01,34.92,270812,,,D,V*39

Table 9.1-9 RMC Data Format

Name	Example	Units	Description
Message ID	\$GNRMC		RMC protocol header
UTC Time	183015.000		hhmmss.sss
Status	А		A=data valid or V=data not valid
Latitude	2503.7123		ddmm.mmmm
N/S Indicator	N		N=north or S=south
Longitude	12138.7446		dddmm.mmmm
E/W Indicator	Е		E=east or W=west
Speed over ground	0.01	knots	True
Course over ground	34.92	degrees	
Date	270812		ddmmyy
Magnetic variation		degrees	

LOCOSYS Technology Inc.

Variation sense		E=east or W=west (Not shown)
		N = No position fix
		A = Autonomous GNSS fix
Mada	D	D = Differential GNSS fix
Mode	D	R = RTK fixed
		F = RTK float
		E = Estimated/Dead reckoning fix
		S = Safe
NT. Contractor		C = Caution
indicator	v	U = Unsafe
		V = Void
		(NMEA Ver 4.10 support only)
Checksum	*39	
<cr> <lf></lf></cr>		End of message termination

• VTG---Course Over Ground and Ground Speed

Table 9.1-10 contains the values for the following example:

\$GNVTG,196.90,T,,M,0.01,N,0.01,K,D*21

Table 9.1-10 VTG Data Format

Name	Example	Units	Description
Message ID	\$GNVTG		VTG protocol header
Course over ground	196.90	degrees	Measured heading
Reference	Т		True
Course over ground		degrees	Measured heading
Reference	М		Magnetic
Speed over ground	0.01	knots	Measured speed
Units	N		Knots
Speed over ground	0.01	km/hr	Measured speed
Units	K		Kilometer per hour
Mode	D		N = No position fix A = Autonomous GNSS fix D = Differential GNSS fix R = RTK fixed F = RTK float E = Estimated/Dead reckoning fix
Checksum	*21		
<cr> <lf></lf></cr>			End of message termination

9.2 Proprietary NMEA input/output message Please refer to MTK proprietary message.

9.3 Examples to configure the power mode of GNSS module

The GNSS module supports different power modes that user can configure by issuing software commands.

9.3.1 Standby mode

User can issue software command to make GNSS module go into standby mode that consumes less than 500uA current. GNSS module will be awaked when receiving any byte. The following flow chart is an example to make GNSS module go into standby mode and then wake up.

9.3.2 Periodic mode

When GNSS module is commanded to periodic mode, it will be in operation and standby periodically. Its status of power consumption is as below chart.

The following flow chart is an example to make GNSS module go into periodic mode and then back to normal operation mode.

9.3.3 AlwaysLocateTM mode

AlwaysLocateTM is an intelligent controller of periodic mode. Depending on the environment and motion conditions, GNSS module can adaptively adjust working/standby time to achieve balance of positioning accuracy and power consumption. In this mode, the host CPU does not need to control GNSS module until the host CPU needs the GNSS position data. The following flow chart is an example to make GNSS module go into AlwaysLocateTM mode and then back to normal operation mode. Note: AlwaysLocateTM is a trade mark of MTK.

Start GPS module is powered on Change GPS to AlwaysLocate mode unsigned char AlwaysLocateMode[] = {"\$PMTK225,8*23\x0D\x0A"}; Yes GPS module will return message "\$PMTK001,225,3*35\x0D\x0A' if command is accepted. Request a GPS Yes position data Issue any byte to get No No GPS position data Set GPS to normal operation mode? Change GPS back to AlwaysLocate mode Yes Issue any byte to GPS No and wait it awake Set GPS to normal operation mode unsigned char NormalMode[] = {"\$PMTK225,0*28\x0D\x0A"}; End

GPS is in normal mode

9.4 Data logger

The GNSS module has internal flash memory for logging GNSS data. The configurations include time interval, distance, speed, logging mode, and ... etc. For more information, please contact us.

9.5 Examples to configure the update rate of GNSS module

The GNSS module supports up to 10Hz update rate that user can configure by issuing software commands. Note that the configurations by software commands are stored in the battery-backed SRAM that is powered through VBACKUP pin. Once it drains out, the default/factory settings will be applied.

Due to the transmitting capacity per second of the current baud rate, GNSS module has to be changed to higher baud rate for high update rate of position fix. The user can use the following software commands to change baud rate.

Baud rate	Software command
Factory default	\$PMTK251,0*28 <cr><lf></lf></cr>
4800	\$PMTK251,4800*14 <cr><lf></lf></cr>
9600	\$PMTK251,9600*17 <cr><lf></lf></cr>
19200	\$PMTK251,19200*22 <cr><lf></lf></cr>
38400	\$PMTK251,38400*27 <cr><lf></lf></cr>
57600	\$PMTK251,57600*2C <cr><lf></lf></cr>
115200	\$PMTK251,115200*1F <cr><lf></lf></cr>

Note: <CR> means Carriage Return, i.e. 0x0D in hexadecimal. <LF> means Line Feed, i.e. 0x0A in hexadecimal.

If the user does not want to change baud rate, you can reduce the output NMEA sentences by the following software commands.

NMEA sentence	Software command		
Factory default	\$PMTK314,-1*04 <cr><lf></lf></cr>		
Only GLL at 1Hz	\$PMTK314,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0		
Only RMC at 1Hz	\$PMTK314,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0		
Only VTG at 1Hz	\$PMTK314,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0		
Only GGA at 1Hz	\$PMTK314,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0		
Only GSA at 1Hz	\$PMTK314,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0		
Only GSV at 1Hz	\$PMTK314,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0		
Only ZDA at 1Hz	\$PMTK314,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0		
RMC, GGA, GSA			
at 1Hz and GSV at	\$PMTK314,0,1,0,1,1,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0		
0.2Hz			
If the command is correct and executed, GNSS module will output message			
\$PMTK001 314 3*36 <cr><le></le></cr>			

After the GNSS module is changed to higher baud rate or reduced NMEA sentence, the

LOCOSYS Technology Inc. 20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi District, New Taipei City 22101, Taiwan 🕾 886-2-8698-3698 😑 886-2-8698-3699 Cwww.locosystech.com

Interval of position fix	Software command			
Every 100ms (10Hz) ⁽¹⁾	\$PMTK220,100*2F <cr><lf></lf></cr>			
Every 200ms (5Hz)	\$PMTK220,200*2C <cr><lf></lf></cr>			
Every 500ms (2Hz)	\$PMTK220,500*2B <cr><lf></lf></cr>			
Every 1000ms (1Hz)	\$PMTK220,1000*1F <cr><lf></lf></cr>			
Every 2000ms (0.5Hz) ⁽²⁾	\$PMTK220,2000*1C <cr><lf></lf></cr>			
If the command is correct and executed, GNSS module will				
output message \$PMTK001,220,3*30 <cr><lf></lf></cr>				

user can configure it to high update rate of position fix by the following commands.

Note 1: The minimum interval of position fix is 100ms, i.e. the maximum update rate is 10Hz. Note 2: The current consumption is the same with the update rate of 1Hz.

9.6 Configure the static navigation parameter

The output position of GNSS module will keep the same and output speed will be zero if the actual speed is below the threshold of the static navigation parameter. This is useful for different applications. For example, the car stopped at a red light will get stationary GNSS position if the threshold is 1.5m/s. It is better to disable this function by setting threshold to 0 for pedestrian navigation. This function is default disabled.

The format of the software command is as below.

\$PMTK386,speed threshold*checksum<CR><LF>

The unit of speed threshold is meter per second. The range of speed threshold is from 0.1m/s to 2.0m/s. Value 0 is to disable the function.

10 Packing and Handling

10.1 Packing

10.2 Moisture Sensitivity

The module belongs to moisture sensitive device (IPC/JEDEC J-STD-020C Level III). If it is not used by then, we strong recommended storing the GNSS modules in dry places such as dry cabinet. The approximate shelf life for LOCOSYS GNSS modules packages is 6 months from the bag seal date, when store in a non-condensing storage environment ($<30^{\circ}C/60\%$ RH)

10.3 ESD Handling

Please carefully follow the following precautions to prevent severe damage to

GNSS modules.

LOCOSYS GNSS modules are sensitive to electrostatic discharges, and thus are Electrostatic Sensitive Devices (ESD). Careful handling of the GNSS modules and in particular RFIN pin must follow the standard ESD safety protections:

- Unless there is a galvanic coupling between the local GND and the PCB GND, then the first point of contact when handling the PCB shall always be between the local GND and PCB GND.
- Before working with RFIN pin, please make sure the GND is connected.
- When working with RFIN pin, do not contact any charges capacitors or materials that can easily develop or store charges such as patch antenna, coax cable, soldering iron.
- When soldering RFIN pin, please make sure to use an ESD safe soldering iron (tip)

Document change list

Revision 1.0

- First release on May, 07 2019.
- Revision 1.1 (April 29, 2020)
- Added "Note 1" in the section 4.
- Revision 1.2 (July 24, 2020)
- Revised protocol support NMEA 0183 version from 4.10 to 4.00 in the section 4.
- Added "Note 2" in the section 4.
- Revised section 9.1 NMEA output message.